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Effect of stress and temperature on dry 
craze growth kinetics during low-stress 
creep of polycarbonate 
Part 2 Theoretical model 

N I C O L E  V E R H E U L P E N - H E Y M A N S ,  J.C. B A U W E N S  
Physique des MatOriaux de Synthbse, Universit~ Libre de Bruxelles, 1050 Bruxelles, 
Belgium 

A model for craze growth is presented, based on stress and strain analysis around a craze 
and on rheological properties of craze matter. This model is shown to account 
quantitatively for observed growth rates, and to be in agreement with the variation of 
the delay time for crazing in polycarbonate wi th stress and temperature. 

1. Introduction 
Critical conditions for craze growth have been 
analysed previously using methods derived from 
fracture mechanics [ 1 - 4 ] .  However, these studies 
concerned craze growth in an active environment. 
According to a model put forward by Gent, which 
is also applicable to dry crazing, craze initiation 
occurs under the influence of a local stress con- 
centration, by transformation of the region at the 
tip of a chance flaw to a rubbery state, and sub- 
sequent cavitation of the rubbery phase. The craze 
propagation mechanism is identical, except that the 
stress concentration is now due to the craze itself 
[5, 6] .  This model is unsatisfactory, among other 
reasons, in that it implies stress concentration 
factors of  order 20 or 30 [5]. Under a moderate 
applied stress of, say, 3 kg mm -2, the craze- or flaw- 
tip stress would be 60 kg mm-2, and such a stress 
must lead to immediate fracture. Also, in order to 
obtain agreement of  the predicted strain-rate depen- 
dence of  crazing stress with experiment, the stress- 
concentration factor of  a given flaw must depend 
on strain-rate, which is an unrealistic assumption. 

Our attempts to derive a law for craze growth 
from conditions for craze tip yielding were un- 
successful, as this assumption implied accelerated 
craze growth, in contrast with the observed de- 
celerated growth [7]. It was then thought that 
craze growth might be attributed to release of  
strain energy due to relaxation of the modulus of  
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the matrix. This assumption led to a decelerated 
growth law which, however, was not  linear in log 
time. Also, theoretical propagation rates were one 
to two orders of  magnitude smaller than experi- 
mental rates [7]. 

The model for craze growth, given below, is 
based on the stress field along a craze and on the 
rheological properties of  the craze material itself. 
This model leads to a law for craze growth in 
agreement with the most frequently observed ex- 
perimental law, and can account for various other 
kinds of  behaviour. Also, the observed variation of  
delay time for crazing with stress and temperature 
is compatible with the predictions of  the model. 

2. Stress analysis around a craze 
A Fourier transform method was previously used 
b y  Knight for analysis of  the stress field along a 
craze. Knight's results were not used here for the 
following reasons. 

(1) The above method is valid only if there are 
no stresses acting parallel to the craze edge. It was 
felt that a more complete analysis might be needed, 
in case this condition were not satisfied. 

(2) According to Knight's results, given the 
shape of the craze body (Fig. 1), there is only one 
possible craze tip shape, and only one possible 
stress field, compatible with stress equilibrium in 
the matrix. In particular, this implies a stress field 
independent of  the stress-strain relationship in the 
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Figure l Craze geomet ry  for analysis of stress field due to 
a craze. 

plastically-deforming craze tip region and, there- 
fore, identical whatever the material under observa- 
tion. It was found that Knight's conclusion was due 
to an oversight in his derivation, and that in fact 
an infinity of  craze tip shapes are possible. This 
pomt is fully discussed elsewhere [8].  

For these reasons, it was preferred to use 
Muskhelishvili's method for stress and strain analy- 
sis in a plate in which there are displacement dis- 
continuities; this method also has the advantage of  
giving the solution for the entire plate. A single 
craze of half-length a embedded in an infinite sheet 
is considered, and suitable boundary conditions 
must be given along the craze-matr ix interface. 
The stress field in the matrix can then be com- 
puted from two potentials, r + iv) and ~(x + iy) 
(see Appendix). 

It is presumed that the thickness of  the un- 
stressed craze is neghgible with respect to its 
length. Two parts of  the craze are defined on 
Fig. 1 : the tip of  length r, in which transformation 
to craze material takes place, and the body of  
length 2(a - - r ) ,  in which craze material has well- 
defined, though unknown, rheological character- 
istics. Transformation is presumed complete at the 
base of  the tip. 

As a first approximation, the stress acting per- 
pendicular to the craze is considered constant 
along the craze tip. This assumption is based on 
the fact that for a given craze propagation rate, 
strain-rate cannot vary by orders of magnitude 
from one part of the craze tip to another. As strain- 
rate at yield of  glassy polymers is extremely sensi- 
tive to small variations in stress, it appears reason- 
able to assume that stress is constant (equal to ee) 
in the craze tip. 

Along the craze body, two different simple 
assumptions can be made, allowing an explicit 
solution to be found: either the displacement 6o 
or the stress Oe perpendicular to the craze edge 
can be constant. In the first case (stress field I) 
there is a stress singularity at the base of the tip, 
indicating incompatibility between constant dis- 

placement along the craze body and constant stress 
along the tip. In the second case (stress field II), 
which can be looked on as a modified Dugdale 
problem [9],  there is no such singularity. Vari- 
ation of  normal stress oy and displacement 6 along 
the craze is given in Fig. 2 for stress-field I and on 
Fig. 3 for stress field II. 

These solutions are based solely on conditions 
for stress equilibrium in the Hookean matrix. If  
craze properties were also taken into account, it is 
probable that the resulting stress field would much 
resemble that which is schematically represented on 
Fig. 4, from which it can be seen that both stress 
and displacement must be approximately constant 
under stress along the craze body, and therefore 
either stress field I or II can be considered as a 
good first approximation of  the real stress field. 
In computations (Section 3) stress field II was used, 
as it does not present any stress singularities along 
the craze. 
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Figure 2 Distr ibut ion of  normal  stress and displacement  

along a craze using MuskhelishvilFs method  of  analysis 

(3o and ~e are given). 
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Figure 3 As Fig. 2 but  a e and a e are given. 
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Figure 4 Probable  stress and displacement  field sur round-  
ing a craze. 

The stresses and displacements at a point P ( x ,  y )  

are given by Equations A24 to A28, which reduce 
to the following along the craze alignment. In these 
equations, Oa is average applied stress, u and v are 
displacements respectively parallel to O x  and Oy,  

and K is a constant defined in the Appendix. 
(a) Craze body: Ix I <~ a - -  r ,  y = 0 

o~ : - ( o . - o ~ )  (1) 

% = o~ (2) 

r~y = 0 (3) 

2 G u  = -- ( K + I ) + ~ - ( K - - I  x (4) 

2 G v  - Oe - -  oe (K + 1) 
2rr 

(a  - -  r ) x / ( a  2 - -  x 2) - -  x x / [ r ( 2 a  -- r)] 
x in ( a  - -  r ) x / ( a  2 - - x  ~) + x x / [ r ( 2 a  - -  r)] (5) 

x / ( a  2 - - x  2) + x / [ r ( a  - -  r)] } 
+ (~ - r )  In x/(~ ~_x~) --X/[~(a ,)J 

] 

(b) Craze tip: a - -  r <~ [x l  < ~ a , y  = 0 

(Yx = O e - - O - a  ( 6 )  

Oy = 0 e ( 7 )  

~x~ = 0 (8) 

+ Oe -- o_~ (K -- 1)(x - - a  + r) (9) 
2 

2 G v  - % - ~  (t~ + l ) 
27r 

x x / [ r ( 2 a  - -  r)] - -  (a - -  r) ,v /(a 2 - -  X 2) 
x In x x / [ r ( 2 a  2 7 ~ ]  + (a - -  r ) x / ( a  2 - - x  2) (10) 

, . ,  x / I t ( a - r ) ]  + x / ( a 2 - x  2) / 

(c) Beyond craze tip: x > a , y  = 0 

Oe - -  % (a - -  r ) x / [ r ( 2 a  - -  r)] 
o,~ = 1r/2 t a n - t x [ x  +x/ (x=--a2) ]  - - ( a - - 0  2 

(11) 

O~y = % at - % - - O e  
rr/2 tan -~ 

(a - r ) x / [ r ( 2 a  - r)] 
x [x + X/(x 2 -- a2)] -- (a - r) 2 (12) 

7xy = 0 (13) 

2 G u  = O a ( K _ _ 3 ) x +  % -  ~  
4 n 

(a --  r) x/[r(2a - - r ) ]  (14) 
x tan -~ x [x + X/(x 2 -- a~)] - -  (a - -  r )  z 

_ [ ]) 
2 a v  = 0 (15) 

It can be seen not only that there is a stress con- 
centration at the craze tip, but aIso that t h e  

normal stress parallel to the craze, ox, is tensile 
there, raising the hydrostatic component of the 
local stress and aiding cavitation and, therefore, 
craze propagation. On the contrary, along the craze 
body, o x is compressive, lowering the hydrostatic 
component, and as oe is lower than the applied 
stress, there is no tendency for the craze to propa- 
gate towards the matrix. Therefore, the thickness 
of  the layer of  material from which the craze is 
formed must remain practically constant during 
craze propagation. This has been confirmed by 
electron microscopy of  surfaces of  crazed poly- 
carbonate specimens: thicknesses of  unstressed 
crazes do not vary significantly with length nor 
with testing conditions [7, 10]. 

The stress distribution is such that the local 
stress % is practically constant at any time along 
the craze body. We shall now consider variation 
during craze growth of  Oe, which depends on the 
ratio of  craze width to length by Equation 5. As a 
first approximation, when r ~ a and putting x = 0, 
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Equation 5 can be expressed as: 

4G 6o 
o a  - -  % - ( 1 6 )  

K - - l a  

where 6 o is the displacement at x = 0. According 
to Bessonov and Kuvshinskii's observations on plas- 
ticized PMMA, the ratio of total craze thickness to 
craze length remains practically constant during 
propagation, decreasing slowly during the early 
stages of growth [11]. As total thickness is equal 
to unstrained thickness plus displacement, these 
observations would seem to indicate that displace- 
ment is roughly proportional to length. Then, by 
Equation 16, craze stress Oc is constant during 
growth, which proceeds under stationary con- 
ditions, and craze material is subjected to creep 
loading. 

It is implicit in the above statement that craze 
deformation can take place at low stresses at which 
propagation of plastic deformation does not occur 
in the matrix, since it has been supposed that no 
material is drawn into the craze during growth. 

3. Model for creep of craze material 
The rheological characteristics of craze material are 
unknown. It appears however from work by 
Kambour and Kopp [12] and by Hoare and Hull 
[13] that craze material is non-linear viscoelastic, 
with a yield stress at moderate strain-rates some- 
what lower than that of uncrazed material. Vari- 
ation of craze yield stress with temperature and 
strain-rate was not measured. Taking account of 
these observations, it seems reasonable to represent 
craze material by a rheological model similar to the 
one proposed by Haward and Thackray for glassy 
polymers [14]. In our model (Fig. 5), r~ c is an 
Eyring dashpot representing yield behaviour of 
craze material, and Ec represents rubbery elasticity 
of craze material. E c is considered constant as 
a first approximation. The high-modulus Hookean 
spring, present in Haward and Thackray's model, 
is not considered here as the resulting strain is small 
with respect to total strain. 

From this model, the law of deformation of 

- f f  

Figure  5 R h e o l o g i c a l  m o d e l  r e p r e s e n t i n g  b e h a v i o u r  o f  

c raze  m a t t e r .  
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craze material is: 

oc = Eeec + AcT(RTQC + ln 2Cc + ln ec). 

(17) 

If the craze was formed from a layer of material 
of thickness e prior to deformation, the craze strain 
is 

260 
% = - -  (18) 

e 

Putting A = 6o/a, constant by hypothesis during 
growth of a given craze, and making use of 
Equation 18, Equation 17 becomes: 

oc - FAcT + in 2Cc ~--+lni 
e e 

(19) 
where the total craze length l has been introduced 
instead of half-length a. 

Supposing that A and e are constant during the 
entire propagation phase, integration of Equation 
19 from time ti at which l = 0 gives: 

t - -  t i q- t*  
l = 10in t* (20) 

where 

eAeT 
l o - -  

EtA 

- AcT exp 

a n d  t i is the craze initiation time. 

(21) 

oe ) (22) 
AcT 

4. Discussion 
4.1. Craze propagation law 
Observations of craze propagation in polycarbonate 
have been presented previously and results will 
only be recalled briefly here. Growth of individual 
crazes was generally linear with log time (Fig. 6a) 
although occasionally deviations from a linear plot 
were observed immediately after initiation (Fig. 
6b). Less simple plots were sometimes observed 
(Fig. 6c and d); such cases were, however, ex- 
tremely infrequent. Craze growth can thus be 
defined by two parameters: the slope lo of the 
plot of length against log time, and the abscissa 
intercept t*. 

The law for propagation derived from our 
model is identical with the experimental law of 
Fig. 6a if t i = t * .  It is to be stressed that craze 
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Figure 6 Var ious  cases o f  craze g r o w t h  in p o l y c a r b o n a t e :  

T =  80 ~ C; (c) a = 2 . 7 7 k g m m  -2, T =  80 ~ C; (d) o = 2 . 5 8 k g  

Figure 7 E l e c t i o n  m i c r o g r a p h  of  a rep l ica  of  a crazed 

p o l y c a r b o n a t e  s p e c i m e n  showing  sudden  v a l i a t i o n s  of  
craze th i ckness .  

propagation was frequently followed over several 
decades of time. 

If craze initiation time t i is different from t*, 
logarithmic propagation is only observed if time 
under load is much greater than ( t i -  t*). In this 
case, t i is the abscissa intercept of the plot of 
length against log time and t* is the intercept of 
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(a) o = 2 . 6 9 k g  m m  -2, T =  60 ~ C, (b) o =  2 . 2 4 k g m m  -2 

m m  - ~ , T = 8 0  ~ C. 

the linear section of the plot (Fig. 6b). 
Anomalous behaviour (Fig. 6c and d) can be ex- 

plained if sudden growth of craze thickness e and 
displacement 6o occur. The rise of 6o/a then causes 
ae to drop (Equation 16) and propagation continues 
with higher values of t* and of lo (Fig. 6c). On the 
other hand, if growth in length is nearly simul- 
taneous with growth in thickness, both 5o/a and 
oc will remain almost unchanged, and growth will 
be of the kind shown on Fig. 6d. Sudden vari- 
ations of craze thickness have on a few occasions 
been observed in electron microscopy (Fig. 7) and 
therefore even anomalous behaviour is compatible 
with the model. 

4.2. Time constant for craze growth 
It appears from Equation 20 that t* is the time 
constant for craze growth, and also for retarded 
deformation of craze material. This parameter is a 
function only of the theological characteristics of 
craze material, and of the stress transmitted to it 
(Equation 22). It can be seen from Equation 20 
that t* is the time axis intercept of the linear part 
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of plots of craze length against log time. 
A point is to be noted here, in connection with 

various studies of craze initiation kinetics. As 
shown in a previous paper, variation of craze length 
in polycarbonate with log time was generally 
linear since the craze appeared [10], and it would 
seem, therefore, that in this material craze initiation 
and propagation kinetics are determined by quite 
similar parameters. However, in other materials 
such may not be the case, and if 10 is sufficiently 
small, a considerable difference between initiation 
time and propagation time constant could have 
very little effect on the experimentally observed 
growth pattern, since very short crazes are not 
easily detected. In other words, the time necessary 
for detection of crazing, generally thought of as a 
good approximation of initiation time [15 17], 
could very well be close to the time constant for 
propagation, t*, and in fact depend very little on 
initiation time. 

Experimental variation with applied stress and 
temperature of the time constant for craze propa- 
gation in polycarbonate was studied in a previous 
paper [10]. Equation 22 is not expressed as a 
function of applied stress o~ but of local stress %. 
However, as shown above, the hypothesis of con- 
stant ac during growth under creep conditions is 
compatible with experiment, and thus 

o a = sac (23) 

where Oa is applied stress and s is constant during 
growth of each craze, although it may vary from 
one craze to another. The multiplying factor s 
depends on craze geometry by Equation 16, and an 
exact value could be found if the shape of the 
stressed craze were known. Past efforts at repli- 
cating crazed surfaces of specimens under stress 
have on the whole been unsuccessful, due to 
limitation in the choice of a replicating agent suit- 
able for stressed polycarbonate [7]. Work along 
this line is currently in progress. Approximate 
limiting values of s can be found from consider- 
ations of the stress field near a craze. As craze 
stress is lower than applied stress, s must be 
greater than unity. Also, it seems unlikely that 
craze stress could drop much lower than half the 
applied stress, since craze behaviour would then be 
crack-like. It is shown below that with s = 1.1, 
Oa -- ac can be evaluated from experimental values 
of lo as 0.47 kg mm -2, which is quite a reasonable 
value, indicating self-consistency of the model. 

Finally, Equation 22 can be expressed as: 

O a =  sAc[ Q-'-Le+ In 2CcE_~e--ln t*] (24) 
T [ R T  A c T  1 

with 1 < s < 2. 

Fig. 8 represents theoretical plots of oa/T 
against t* derived from Equation 24, together with 
experimental points representing average values. 

, T_~(10-z kg rnm-Z K-1 ) A 2 0 o c  
�9 Z,0~ 

A a 6 0 ~  

m ' ~ A  �9 B0 ~ C 
1.5- _ _ _ _  " ' ~  " ~ " ~  A ~ 100~ 

A A 

m A  
1 _  

0 I-1 I I I 2 I 3 t~[h) 
10 1 10 10 10 

Figure 8 Plot of  ratio of  applied stress to temperature o/T against time constant for craze growth t*. Straight lines are 
from Equation 24. 
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Variations of craze geometry at initiation would 
lead to variations of  s; this could be a possible 
cause of  data scatter. 

The following parameters may be derived from 
the best fit of Equation 24 to the data: 

A = 7 .34x  10 -4kgmm-2K -1 a t a l l T  

Q = 22.35 kcal mo1-1 / 
T ~< 60 ~ C 

J C = 10-Ssec 

Q = 51.4kcalmo1-1 t T ~> 60 ~ 
C. 

C = 10-27sec ) 

Variation of  activation energy as a function of  tem- 
perature could be partly due to chance fluctuations 
between specimens, but there does seem to be a 
definite tendency towards a rise in activation 
energy above about 60 ~ C, possibly connected with 
structural modifications which occur in poly- 
carbonate during annealing at temperatures higher 
than 80 ~ C [18, 19]. Several workers have, in fact, 
shown that mechanical behaviour is influenced by 
annealing [20, 21].  

It is to be noted that these parameters are quite 
different from those for yielding of  macroscopic 
specimens [10],  and therefore that craze material 
cannot be thought of  as a collection of  scaled-down 
tensile specimens. In fact, for ingernal consistency 
of  the proposed model, the deformation mechanism 
of craze material must necessarily be different from 
that of  the matrix, in order that deformation of  
craze material be possible at stresses which do not 
cause appreciable creep of  the matrix. 

As a consequence of the high value of  A and the 

2 t 
ff (kg rnr~ 2) 

low value of  activation energy, low strain-rate 
viscosity of  craze material is much smaller than 
that o f  undeformed material. The cause of this 
difference could be the small dimensions of  craze 
filaments; as pointed out by Kambour and Kopp 
[12],  below a critical dimension, viscosity is pro- 
portional to 1/d 2 where d is the filament diameter. 

To confirm internal consistency of  the model, 
an approximate value of  the craze stress may be 
derived from Equations 16 and 21. 

A value of  E c was found from a stress-strain 
curve of polycarbonate under conditions such that 
deformation was homogeneous at yield; in this case 
the lower yield point is immediately followed by 
a rise in stress which can be attributed to rubbery 
elasticity of  the yielded material (Fig. 9). The slope 
of  the near-linear part of  the curve was 500 g m m  -2 
at 130 ~ C, using initial cross-section and gauge 
length to enable comparison with the model of 
Fig. 5. 

Craze thicknesses were measured in transmission 
or scanning electron microscopy (Fig. 10). The 
ratio of  craze thickness to width of  the associated 
surface groove was supposed equal to 0.75 and the 
residual strain in the unstressed craze was taken as 
70%, from work by Kambour and Kopp [12]. 
Scatter of  craze thickness was in a ratio of  over 
1 : 2 and an average value of  0.6pro was taken, 
giving e = 0.35 gin. 

From analysis of variation of time constant t* 
using Equation 24 and taking s = 1.1, Ac = 6.7 x 
10-4kg mm-2K-1; an average value of  lo, which 
also presented quite a wide scatter, was 200gin.  
Finally, from Equation 21,6o/a = 9.4 x 10-4. This 

1,5 
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Figure 9 Tensile stress-strain curve of polycarbonate. T= 130 ~ C, b = 2 X 10-4sec -l. 

T= 130% 
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Figure 10 Scanning electron microgiaphs of a craze for determination of thickness-to-length ratio. 

value is introduced into Equation 16 with G = 
100 kg mm-2; in plane strain, if Poisson's ratio is 
0.3, K = 1.8 and o a - -  O- c = 0.47 kg mm 2. This value 
is compatible with the proposed value of  s with 
% = 5.2 kg mm 2. It is to be noted that as s is close 
to unity, small changes of  s greatly affect the ratio 
of  applied stress to the difference between applied 
stress and craze stress, whereas this difference itself 
is left almost unchanged. This means that it is dif- 
ficult to distinguish experimentally whether s or 
o~ -- oe is independent o f  testing conditions. 

It appears from the above that although craze 
material viscosity is quite different from that of  a 
macroscopic specimen, rubbery elastic effects are 
similar in the two forms of  material. 

5. C o n c l u s i o n s  
A model for craze growth has been presented, 
whereby propagation is due to creep of  craze 
material under a local stress which is lower than the 
average applied stress. The variation with applied 
stress and temperature of  the time constant for 
propagation, as well as experimental scatter, are 
compatible with results derived from the proposed 
model. According to this model, craze growth is 
linear with log time, in agreement with experiment. 
Quantitative agreement for craze growth in poly- 
carbonate implies a similar rubbery-elastic modulus 
for craze material as for cold-drawn specimens, but 
different parameters of  the rate-process respon- 
sible for viscosity. The cause of  this difference 
could be that craze filaments are extremely thin. 

The proposed model is thus consistent with 
several aspects of  craze propagation in glassy poly- 
mers, and also leads to quite reasonable values of  
the rheological parameters of craze material. 

A p p e n d i x  
By Muskhelishvili's method of  analysis [22],  the 
stresses and displacements in a plane sheet can be 
derived from two potentials, ~b(z) and ~(z), as: 

ox + % = 4 Re ~'(z), (A1) 

% -- ox + 2irxy = 2 [z~b"(z) + ~'(z)] (A2) 

2G(u + iv) = n%(z)-- z%'(z)-- ~(z) (a3)  

where z = x  + iy, x and y being cartesian co- 
ordinates; K = 3 - - 4 u  in plane strain; ~ = (3 - -v) /  
(1 + u) in plane stress; G and ~, are the shear 
modulus and Poisson's ratio of  the matrix; u and v 
are displacements parallel to Ox and Oy. If  a dis- 
placement discontinuity exists along an ellipse L 
of  major axis 2a along Ox and minor axis 2b along 
Oy, the following conformal transformation is used 
to map the ellipse onto the unit circle 7([22] p. 
333): 

wherea = R(1 + m )  b = R ( 1 - m ) .  (A5) 

In the case of symmetrical loading along L, and if 
the external load is a stress Oa normal to Ox, the 
potentials reduce to ( [22] ,  p. 184) 

(A6) 

0"aa --1 s ~n)dn ~(~-) 
4 r 7 rT--~ 

--  f f2 _ m d~ qS(~) -- - ~ -  f (17 )  
\ 
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where 
8 

f = i / ( X ~  + iYn) ds 

~ + m ] Oaa 1 Oaa (A8) 
8 ~ + r ~ ( 1 - m ~ 2 ) j  4 rl 

In this equation, X~ and Y. are stresses given along 
L, s is a linear co-ordinate along L, and ~ is the 
value taken by ~" along the unit circle 3'. 

The thickness of  a well-developed craze is negli- 
gible with respect to its length and therefore m = 1. 
Only external stresses parallel to O y are considered: 

Y~ = +-oe I x l < a - - r ,  y = O + o r O  - 

Y.  = +-% a - r < l x l < a ,  y = O + o r O  -. 
(A9) 

The load can be divided into three parts, as 
potentials for partial loads are additive: potentials 
are then derived separately for the external load 
%; the craze stress oe acting along the whole of  
the craze; the excess stress % -- oe acting along the 
craze tips. 

For the excess stress: 

Y~ = % - - 0 ~  a - - r <  l x l < a  

Y~ = - - ( o e - - a ~ )  a - - r <  l x l < a  

and 

- -a<~x<~--a  + r 

f(~) = - - ( o e - - o c )  7 ~ +  - 

a - - r < . x < ~ a  

Therefore 

and 

f (~)  = 0 I x l ~ a - r  

y = O  + 

y=O- 
(A10) 

+a--r } 

a+r} 
(A11) 

a { 4i/3 

(A12) 

+ f + In f 2 _  e-2ir 

f 2 _ l + 2 i f s i n t 3  ] 
+ 2 cos/3 In f2 1 - -  2i~" sin/3 J 

a { 8i/3 
~, (~)  = ( %  - o c ) - -  

4irr ~" - - 0 / t )  

~'2--1 + 2g" sin ~} (113)  

+ 2 cos 13 In ~-2 _ 1 --  2g- sin 

where cos/3 = 1 -- (r/a). 

The potentials resulting from the craze stress 
% are found by replacing Oe --Oe by % and put- 
ting/3 = 7r/2 in Equations A10 to A13: 

a l  
r = - o~ -- -- (A14) 

2 ~  

a 

626") = - o~ r _ ( 1 / U  

For the external load Oa, 

Oaa [ r~2 + 1 ] . . . .  

(A15) 

Oaa 1 

4 ~) 

(116)  
and by integrating Equations A6 and A7, one 
obtains: 

Oaa(~ ~ )  (AI7)  
r - 8 - 

~ (A18) t)3(~) - ~. _ (1/~')" 

A relation between /3 (or r/a) and the external 
stresses can be found in the hydrostatic com- 
ponent of  the stress at the leading edge of the 
craze is to be bounded. This component  is: 

Ox + o s = 4 Re 

(119) 
= 4 R e  d(~-~ 2f2 ) 

a ( ~  ~ - 1 )  

where q~ = q5i + q~2 + ~b3 (A20) 

and the required condition is 

Oa - -  Oc COS -1 [ 1  - -  (r/a)] 
- (A21) 

oe -- % zr/2 

This condition reduces to the Dugdale condition if 
oc = 0 , that  is, for a crack or a crack-like craze [9]. 

Making use of  Condition A21, the potentials 
can be expressed as: 

Oaa (f 1 ) 
= 7 -  + -( 

4i~r a ~ + In ~ 2 e-2i~ (A22) 

f2 _ 1 + 2if sin/3 ] 
+ 2 cos/3 In f2 _ 1 -- 2if  sin/3 J 
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~{f) = -7- + 
(A23) 

% _ oe ~.z _ 1 + 2i~" sin/3 
. . . . .  a cos/3 In ~2 _ 

2in 1 - -  2i~ sin/3 

giving the  fo l lowing  express ions  for  stresses and  

d i sp lacemen t s :  

Ox - 27r 

( A 2 4 )  
16y sin 2/3 j }  

a ~ ' - -  ~ ' - - ~ -  + 4 s i n : / ?  

ere % t 2  arg 
% = % 2rr ~2 _ e-2/~3 

( A 2 5 )  

O e - -  O e • 
rxy  - 2rr 

( A 2 6 )  
Re 16y sin 2~ 

a~ (~ _ 3)x 
= 7 

2 n  (K + 1 ) l n  ~ -a_e -2 i~  (A27)  

f2 __ e2iB 
+ x(K - -  1) arg ~.= _ e_=i ~ 

Oa 
2cv  = 7 (~ + 1)y 

+ % + 
2~r \ 

(A28) 

- -  y ( ~  - -  1) arg ~2 _ e-=,r 

~-z _ 1 + 2i~" sin 
+ (a - r X •  + 1) In ~-2 _ 1 - 2i~" sin 
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